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Abstract

Masonry towers are characterized by a high susceptibility to seismic actions. Different approaches exist to study their

mechanical behavior and are used depending on the desired level of accuracy of the analysis. Construction codes

usually requires the study of local and global collapse mechanisms based on simplified kinematic analysis. The iden-

tification of the correct collapse configuration is however complex and necessitates thorough on-site surveys. More

elaborated approaches such as finite element method are also performed to simulate the response of masonry towers.

Although successful in many applications, these methods are limited in accurately capturing crack distributions and

fracture mechanisms. In this work, an integrated discrete-analytical approach is proposed. First, the Lattice Discrete

Particle Model (LDPM), which simulates masonry at the stone level and has a superior capability in capturing frac-

ture processes, is adopted to simulate masonry towers subjected to seismic excitation. The numerical model is used

to predict the actual collapse mechanism. Next, the final fractured configuration is used in the kinematic analysis for

the calculation of the ultimate condition. The proposed method is used to analyze the collapse of the Medici tower

that was subjected to the 2009 L’Aquila earthquake. The induced damage and the crack contours are simulated. Six

different failure configurations are then assumed for the kinematic analysis taking into account the relative position of

the openings and the fracture locations. Results show that the collapse of the Medici tower is well replicated by LDPM

and the corresponding kinematic analyses demonstrate the efficiency of the proposed hybrid approach applied to this

case study. The paper also shows that different load configurations, more specifically the direction of the seismic

action, result in more diffused damage states and clear failure patterns cannot be identified for kinematic analyses. In

these cases, it appears fundamental to rely mainly on comprehensive numerical models, such as LDPM, to study the

fracturing process from the cracks trigger to the ultimate complex collapse mechanism.

Keywords: Earthquake, Tower, Unreinforced Irregular Masonry, Lattice Discrete Particle Model, Fracture

Mechanics, Cohesive Behavior, Non-Linear Analysis, Kinematic Analysis, Local Collapse Mechanisms, Global

Collapse Mechanisms
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1. Introduction

Masonry towers represent one of the most relevant

architectural category composing the world cultural her-

itage [2, 3, 4]. Particularly, numerous Italian medieval

towns are connoted by the presence of civic towers soar-

ing in the urban skyline [5, 6, 7]. On the other hand, un-

reinforced masonry tall buildings are characterized by

high susceptibility to seismic actions [8, 9]. By way

of illustration, Fig. 1 shows three examples of towers

destroyed by severe earthquakes occurred in the last

decades. The main reasons of the seismic vulnerabil-

ity of these structures can be traced on their geomet-

ric and material features. In fact, the slenderness of the

tower, i.e. the predominance of one dimension over the

other two, is one of the main characteristics that deter-

mines the overall response [10, 11, 12]. Moreover, the

constituent material, namely masonry, has an heteroge-

neous nature: several studies underlined that the propri-

eties of mortar and stone aggregates [13, 14, 15, 16],

as well as variations in the quality of the construction

work [17, 18], are important aspects affecting the seis-

mic behavior. Other features, able to ensure a satisfac-

tory global behavior, are the effectiveness of the connec-

tions among the external walls of the tower [19, 20] and

between the vertical and horizontal structures [21, 22],

as well as the presence of suitable elements such as ties,

or buttresses [23] that counteract horizontal thrusts.

In this framework, the study of unreinforced ma-

sonry towers appears to be fundamental. Nowadays,

∗Corresponding author.
Email address: g-cusatis@northwestern.edu (Gianluca

Cusatis)

a wide literature is available dealing with the analy-

sis of these type of structures [24, 25, 26, 27]. The

international debate on Cultural Heritage preservation

pointed out the importance of performing effective and

extensive experimental campaigns to assess the seis-

mic vulnerability of masonry slender structures, such

as towers [28, 29, 30, 31, 32, 33]. Several in-situ

techniques exist and have been applied to historical

buildings. Among others, it is worth mentioning non-

destructive testing (NDT) methods, using for example

georadar [29] or thermographic analysis [33] to assess

damage, or slightly destructive methodologies, such as

flat-jack tests, for the measurement of in-situ compres-

sive stresses [32, 34]. However, as the realization of

experiments is often a costly activity, during the last

decades an increasing attention has been paid on the

development of numerical tools and analytical models.

The choice of the most appropriate approach depends

on the desired level of accuracy and simplicity [35]. The

most widely used numerical approach is the Finite Ele-

ment Method (FEM). It shows different levels of com-

plexity, concerning the geometrical discretization of the

domain, ranging from 1D [36, 37] to 3D models [38],

rather than plates and shells approaches [39]. FEM al-

lows to perform different typologies of analysis, either

static [40] or dynamic [41], and provides the adoption

of a variety of constitutive equations describing the ma-

terial behavior, i.e. no tension [37] or elasto-plastic [42]

approaches, or models with damage [43]. Although

FEM has been widely used for regular masonry struc-

tures, it appears to be limited in simulating irregular
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Figure 1: (a) Bhimsen Tower in Nepal, UNESCO patrimony; (b) Clock Tower in Finale Emilia, Emilia Romagna, Italy; (c) Tower in Novi, Modena,
Italy.

Figure 2: Recurrent fracturing patterns observed after seismic events in unreinforced masonry towers [1].

masonries. In fact, because of the heterogeneous nature

of the material and the necessity of capturing complex

crack distributions and fracture mechanisms, the use of

a dedicate modeling tool is necessary.

For the assessment of seismic vulnerability, the Ital-

ian construction code [44] prescribes to perform analy-

sis of local and global collapse mechanisms. The iden-

tification of the collapse mechanisms is not a trivial task

and it requires a preliminary thorough study of the unre-

inforced masonry structure. The knowledge of the con-

struction can be achieved through the performance of a

complete survey that allows (i) the individuation of the

different historical phases affecting the building modi-

fications over the course of the years, and (ii) the full

characterization of the structure both in terms of geom-

etry and material [45]. With this perspective, it is possi-

ble to apply the procedure described by Giuffré in 1993

[46], who illustrated a methodology for the assessment

of the vulnerability of unreinforced masonry structures.

According to this work, the collapse mechanisms of the

structure are identified a priori, by considering the in-

volved portions of the building as a number of rigid

blocks connected by unilateral hinges or sliding joints,

in order to obtain a kinematic chain. Each rigid macro-
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elements are assumed to have unlimited compressive

strength and their reciprocal interfaces to be character-

ized by the absence of tensile strength. Thus, for each

rigid block, the linear and non linear kinematic anal-

yses should be applied and, therefore the mechanism

most likely to occur of all the possible local mechanisms

could be identified. Particularly, Fig. 2 shows that the

aforementioned procedure is suitable to be applied to

slender structures, such as masonry towers [47, 1, 48].

Although successful to some extent, this methodol-

ogy shows three main limitations: (i) the choice of the

collapse mechanisms is discretionary and affected by

a certain level of uncertainty, (ii) both linear and non-

linear kinematic analyses have to be applied to each

rigid block, thus making this procedure tedious to be

performed, (iii) the identification of simplified typol-

ogy of collapse mechanism is inaccurate for complex

geometries. In order to overcome these drawbacks, it

is necessary to directly simulate the fracturing behav-

ior of masonry towers. To this aim, several numeri-

cal methods can be used, as they capture the mechan-

ical behavior of quasi-brittle materials with different

degrees of complexity [49, 50]. The so-called Lat-

tice Discrete Particle Model (LDPM) is here adopted

to model the masonry fracturing behavior at the meso-

scale. LDPM uniquely individuates the localization of

crack pattern that triggers the collapse mechanism. In

this way, the pre-definition of multiple collapse mecha-

nisms can be avoided and the kinematic analysis can be

directly applied to the individuated fractured structural

configuration. Moreover, as the discrete model captures

the entire damage evolution phenomena, starting from

cracks localization, propagation up to the overall col-

lapse, LDPM can be used as an alternative to the kine-

matic analysis [51]. In this study, the LDPM is used

complementary with the kinematic analysis to describe

the fracturing behavior of the Medici tower subjected to

seismic excitation. The main characteristics of the frac-

ture, occurred during the 2009 L’Aquila earthquake, is

identified from the numerical results and, successively,

the individuated cracked configuration is used to per-

form the linear kinematic analysis. Finally, a compari-

son between the kinematic analysis and the lattice dis-

crete modeling is carried on, pointing out advantages

and drawbacks of the proposed integrated approach.

2. Historical evolution of the Medici Tower

The Medici tower is located in Santo Stefano di Ses-

sanio (L’Aquila, Italy), a urban aggregate belonging to

the medieval period. The tower is believed to be one of

the most representative architecture of the central Italy,

because of its spectacular location in the landscape, on

top of a hill, and within the core of the medieval town,

as shown in Fig. 3a. Nowadays, the tower is the result

of several modifications occurred along the centuries.

It is fundamental observing that the knowledge of the

historical phases affecting the building transformations

is a fundamental prerequisite for any restoration inter-

vention, including the choice of the most appropriate

modeling strategy (see Section 4.2). Originally, dur-

ing the 12th century, the cylindrical masonry tower was

built without crowning on top. The hollow cylindri-
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Figure 3: (a) Location of the Medici tower in the landscape and within the core of Santo Stefano di Sessanio; (b) architectonic configuration of the
tower before the 2009 L’Aquila earthquake; (c) reproduction of the tower original profile through scaffolding and other prevention measures placed
after the collapse in 2009.

cal cross section has an internal diameter of 3.86 m

and a thickness of 1.50 m. In addition to the tower

entrance, two small windows can be found along the

body of the tower: one is located at a height of about

3.80 m from the bottom of the tower and the other con-

sists of a narrow window placed near the top edge of

the cylinder. During the period of the Angioins’ domi-

nation, a crenellated masonry parapet was added to the

upper portion of the tower, as shown in Fig. 3a and

Fig. 3b. The battlement is characterized by 10 merlons

and 30 machicolations and its function was to serve as

real defence presidium for the village. In this way, the

total height of the tower reached about 20 m. During

the Second World War, the tower function changed, as

it was used as antiaircraft station and, for this scope, a

concrete slab was built on top of the tower. To exit the

tower and access the crenellated parapet, a small win-

dow was opened in this floor. In April 2009, the tower

did not resist the strong L’Aquila earthquake and col-

lapsed almost completely. At present, just a stump of

the bottom part of the original body remains, character-

ized by a variable height along its perimeter. The stump

presents its shortest side in correspondence of the bot-

tom window, at about 3.80 m height, and the tallest side

in correspondence of the top window, at about 13 m

height. After the 2009 L’Aquila earthquake, shoring,

scaffolding and other prevention measures were placed

around the ruins of the tower in order to prevent the

falling of additional masonry pieces and to reproduce

the original profile of the tower, as shown in Fig. 3c.

For a more detailed description of the Medici tower, the

reader is referred to Gregori and coworkers [52].

3. Main features of the April 2009 seismic event

On Monday, April the 6th, 2009, at 03:32:39 a.m. lo-

cal time a devastating earthquake struck L’Aquila city

and surrounding villages in the Abruzzo region of cen-

tral Italy. The magnitude of the event was estimated to

be ML 5.8 (Richter magnitude scale), and MW 6.2 (mo-

ment magnitude scale), according to the Italian National
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Station Record Latitude Longitude Altitude Soil Epic. dist. PGAEW PGANS PGAZ

[Id] [Id] [°] [°] [m] [-] [km] [g] [g] [g]
AQG FA030 42.37 13.34 721 B 4.3 0.42 0.43 0.22
AQV GX066 42.38 13.34 692 C 4.8 0.67 0.56 0.51
AQK AM043 42.34 13.40 726 B 5.6 0.34 0.34 0.35
AQA CU104 42.38 13.34 693 C 5.8 0.39 0.45 0.38

Table 1: Station of the Accelerometric National Network located in proximity of the epicenter

Institute of Geophysics and Volcanology (INGV) [53].

The main shock was followed by a long-lasting seis-

mic sequence, including more than 30 aftershocks with

magnitude 3.5 < ML < 5.0. The earthquake has been in-

terpreted as the result of a normal fault movement on a

NW-SE oriented structure, about 15 km long, which is

part of the 800 km long segmented normal fault sys-

tem running all along the Apennines mountain chain

[54, 55, 56]. Specifically, the entire area affected by the

seismic activity covers an ellipse-shaped region parallel

to the Apennines mountain belt, with principal axes of

about 15 km long and secondary axes 2-5 km long. Sev-

eral studies showed that the 2009 L’Aquila earthquake

caused an up-dip slip movement with a rectangular rup-

ture area of approximately 17x14 m2, at a depth ranging

between 11.8 km and 0.6 km. The rupture plane is char-

acterized by a strike of 147°, a dip of 43° and a slip of

88° [57]. The main shaking was recorded by 55 sta-

tions of the National Accelerometric Network, fourteen

being in the Abruzzo region. The nearest stations are

AQG, AQV, AQK and AQA, located at 4.3 km, 4.8 km,

5.6 km and 5.8 km from the epicenter, respectively, on

B- or C-type of soil (for the classification of soil types

the reader is referred to [58]). Tab. 3 reports the values

of the Peak Ground Acceleration (PGA) for the two hor-

izontal and orthogonal directions (PGAEW and PGANS )

and for the vertical direction (PGAZ).

4. Numerical analysis

The mechanical behavior of the Medici tower sub-

jected to the 2009 L’Aquila earthquake is numerically

analysed in this section. For this purpose, the Lattice

Discrete Particle Model (LDPM) is here adopted.

4.1. The Lattice Discrete Particle Model

At first, the LDPM has been proposed by Cusatis

and coworkers to simulate the behavior of concrete at

a meso-scale level. This peculiarity has been achieved

by modeling the interaction between coarse aggregate

pieces [59, 60]. Afterwards, LDPM has been success-

fully adopted to capture the behavior of several quasi-

brittle materials [61, 62, 63, 64, 65], and to simu-

late complex multi-physical phenomena such as aging,

ASR [66, 67], and hygro-thermal-chemical processes

[68, 69].

Particularly, LDPM allows the characterization of

irregular masonry as two-phase material, i.e. stone-

aggregate and mortar (Fig. 4a). The potential failure

is assumed to occur at the aggregate-mortar interface or

within the mortar layer [35], which is consistent with

typical experimental observations on irregular masonry.
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Figure 4: (a) Microstructure of irregular stone masonry; (b) aggregate distribution in a masonry arch; (c) two adjacent LDPM polyhedral cells
enclosing the associated stone-aggregate pieces; tetrahedron portion associated with a stone-aggregate and a triangular LDPM facet.

The geometrical meso-structure of masonry is ob-

tained through the following steps: (i) stone-aggregate

pieces are assumed to be particles; they are randomly

placed within the specimen volume through a trial and

error procedure, from the largest to the smallest size.

These particles or stones follow a particle size distribu-

tion function which is defined from a set of mix-design

parameters: cement-mortar content c, water-to-mortar

ratio w/c, maximum and minimum stone-aggregate size

da and d0, respectively, and Fuller coefficient n f . Fig. 4b

shows an example of particle placement inside the vol-

ume of a masonry semicircular arch; (ii) zero-radius

particles are randomly placed on the external surface of

the sample for the application of the boundary condi-

tions; (iii) a Delaunay tetrahedralization procedure con-

nects the centers of the spherical particles (or nodes),

defining a lattice system; (iv) a three-dimensional do-

main tessellation is then performed, resulting in a sys-

tem of polyhedral cells, each of which encloses a par-

ticle (Fig. 4c). The polyhedral cells form a network of

triangular facets that are assumed to be the potential ma-

terial failure location. The stones and the surrounding

mortar are thus represented by irregular meso-cells that

well idealize the real textures and shapes of typical ma-

sonry stones, and are intrinsically designed to produce

a statistically isotropic masonry material often observed

in real structures. Three sets of equations are written

to complete the discrete model framework: definition

of strains at each triangular facet, constitutive equations

which relate facet strain vector with facet stress vec-

tor, and particle equilibrium equations. The constitutive

equations describe a softening behavior for pure tension

and shear-tension and a plastic hardening behavior for

pure compression and shear-compression.

If xi and x j are the positions of nodes i and j, adjacent

to the facet k, the facet strains are defined as:

ek = [eN eM eL]T =

[nT
k [[uk]]

l
mT

k [[uk]]
l

lTk [[uk]]
l

]T

(1)

where eN is the normal strain component, and eM , eL

are the tangential strain components, [[uk]] = u j − ui

is the displacement jump at the centroid of the facet k,

l = ‖x j − xi‖2 is the distance between the two nodes,

nk = (x j − xi)/l and mk, lk are two unit vectors mutually

orthogonal in the facet plane projected orthogonally to

the line connecting the adjacent nodes Fig. 1g. It was
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demonstrated [70, 71, 72] that this definition of strains

is completely consistent with classical strain definitions

in continuum mechanics.

Similarly, one can define the traction vector as

tk = [tN tM tL]T , where tN is the normal component,

tM and tL are the shear components. For the sake of

readability, the subscript k that designates the facet is

dropped in the following equations. In order to describe

the behavior of the material, one needs to introduce the

constitutive equations imposed at the centroid of each

facet. The elastic behavior is defined through linear re-

lations between the normal and shear stresses, and the

corresponding strains as tN = ENeN , tM = ET eM and

tL = ET eL, EN = E0 and ET = αE0, E0 ≈ E/(1 − 2ν)

and α ≈ (1 − 4ν)/(1 + ν) are the effective normal mod-

ulus and the shear-normal coupling parameter, respec-

tively, and E is the macroscopic Young’s modulus and ν

is the macroscopic Poisson’s ratio of the masonry.

In order to describe the inelastic behavior, one needs

to distinguish three sets of mechanisms.

The first mechanism is the fracturing and cohe-

sive behavior under tension and tension/shear occur-

ring for eN > 0. One can define the effective strain as

e = (e2
N + α(e2

M + e2
L))

1
2 , and the effective stress

as t = (t2
N + (t2

M + t2
L)/α)

1
2 and write the relation-

ship between stresses and strains through damage-type

constitutive equations as tN = teN/e, tM = αteM/e and

tL = αteL/e [73, 74].

The effective stress t is defined incrementally as

ṫ = EN ė and its magnitude is limited by a strain-

dependent boundary 0 6 t 6 σbt(e, ω) in which

σbt(e, ω) = σ0(ω) exp [−H0(ω)〈emax − e0(ω)〉/σ0(ω)],

〈x〉 = max(x, 0), ω is a variable defining the degree of

interaction between shear and normal loading defined

as tan(ω) = (eN)/(
√
αeT ) = (tN

√
α)/(tT ); eT is the total

shear strain defined as eT = (e2
M + e2

L)
1
2 , and tT is the

total shear stress defined as tT = (t2
M + t2

L)
1
2 .

The maximum effective strain is time dependent and

is defined as emax(τ) = (e2
N,max(τ) + αe2

T,max(τ))
1
2 , where

eN,max(τ) = max
τ′<τ

[eN(τ′)] and eT,max(τ) = max
τ′<τ

[eT (τ′)].

The strength limit of the effective stress that defines the

transition between pure tension and pure shear is

σ0(ω) = σt

− sin(ω) +

√
sin2(ω) + 4α cos2(ω)/r2

st

2α cos2(ω)/r2
st

(2)

where rst = σs/σt is the shear to tensile strength ratio,

σs is the shear strength and σt is the tensile strength.

The post-peak softening modulus is controlled by the

effective softening modulus H0(ω) = Hs/α + (Ht −

Hs/α) (2ω/π)nt , in which Ht = 2E0/(lt/l−1), Hs = rsE0

and nt is the softening exponent; lt is the tensile char-

acteristic length defined as lt = 2E0Gt/σ
2
t , Gt is the

mesoscale fracture energy.

The second set of equations describes the mecha-

nism behind pore collapse and material compaction

eN < 0 under high confining pressures. The strain-

hardening behavior in compression is simulated with the

following strain-dependent boundary ṫN = EN ėN and

−σbc(eD, eV ) 6 tN 6 0, where σbc = σc0 + Hc(−eV −

ec0) if −eV 6 ec1, otherwise σbc = σc1exp[(−eV −

ec1)Hc/σc1] and Hc = Hc1 + (Hc0 − Hc1)/(1 + κc2(rDV −
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κc1)), σc1 = σc0 + Hc(ec1 − ec0), ec1 = κc0ec0, ec0 =

σc0/E0, eV = (V − V0)/V0 is the volumetric strain com-

puted at the LDPM tetrahedral level, eD = eN − eV ,

rDV = |eD|/(eV0 − eV ), for eD 6 0 and rDV = |eD|/(eV0),

for eD > 0, eV0 = 0.1ec0, σc0 is the meso-scale yielding

compressive stress, Hc0 is the initial hardening modulus,

and κc0, κc1, κc2 are parameters governing the triaxial be-

havior at very high confinement.

The third failure type considered in LDPM describes

the frictional behavior. In the presence of compressive

stresses, the shear strength increases due to frictional ef-

fects. The frictional behavior is computed using a non-

linear Mohr-Coulomb model in which the internal fric-

tion coefficient varies from an initial value µ0 to zero

with the following formulation:

σbs(tN) = σs + µ0σN0 − µ0σN0exp(tN/σN0) (3)

where σs is the cohesion and σN0 is the so-called tran-

sitional stress.

Finally, the governing equations are completed by

writing the equilibrium equations of each LDPM cell:

∑
k∈FI

Aktk + VIb = 0,
∑
k∈FI

Akck × tk = 0 (4)

where FI is the set containing all the facets of a generic

polyhedral cell I, Ak is the area of the facet k, ck is the

vector representing the distance between the center of

the facet k and the center of the cell, VI is the cell vol-

ume and b is the external body force applied to the cell.

4.2. Modeling strategy

4.2.1. The meso-scale characterization

The geometrical characterization of the LDPM

mesostructure was calibrated in [75]. More specifi-

cally, the stone-to-mortar ratio a/c = 3.4 correspond-

ing to the ratio between the volume of stones and the

volume of cement-mortar, and the water-to-mortar ra-

tio w/c = 0.5 were assumed based on the actual ma-

sonry composition. The cement-mortar content param-

eter c = 427.5 kg/m3 was calculated such that the total

mass density ρ were equal to 1,800.0 kg/m3 using the

formula: ρ = c (1+w/c+a/c). The stones were assumed

to have characteristic size within the range d0 = 33 mm

and da = 200 mm in order to simulate the coarse gravel.

The Fuller coefficient n f = 0.5 was assumed as de-

fault parameter since no specific sieve curve was as-

sumed for the preparation of the specimens in the ex-

perimental campaign. The model parameters are as fol-

lows: normal elastic modulus E0 = 1,200 MPa, shear-

normal coupling parameter α = 0.065, tensile strength

σt = 0.3 MPa, tensile fracture energy Gt = 11 N/m,

shear-to-tensile strength ratio σs/σt = 1.25, soften-

ing exponent nt = 0.2, yielding compressive stress

σc0 = 125 MPa, initial hardening modulus Hc0/E0 = 0.4,

final hardening modulus Hc1 = 1, transitional strain ra-

tio kc0 = 1.75, deviatoric strain threshold ratio kc1 = 1,

deviatoric damage parameter kc2 = 5, initial friction co-

efficient µ0 = 0.2, asymptotic friction coefficient µ∞ = 0,

transitional stress σN0 = 42 MPa, densification ratio

Ed/E0 = 1 and rs = 0.

In order to accurately simulate the seismic behav-
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Figure 5: (a) Picture showing the Medici tower before the 2009 L’Aquila earthquake (USRC: Uff. Spec. Ric. Com. Cratere); LDPM mesh of the
Medici tower showing: (b) the cell outline on the external cylindrical surface, (c) the distribution of spherical aggregates within the volume.

Figure 6: Histories of velocity along (a) the North-South direction, (b) the Est-West direction, (c) the parallel direction of the fault plane (Strike
Parallel), (d) the normal direction of the fault plane (Strike Normal).

ior of the tower, the choice of the most suitable mod-

eling strategy accounted for the several structural and

functional modifications that affected the tower along

the centuries. The sub-portions of the overall geome-

try are individuated to be representative of the real case

of study (see Fig. 5a and Fig. 5b): the original hollow

cylindrical body of the tower and the battlement com-

posed by 10 merlons are modeled together using a sin-

gle LDPM mesh (see Fig. 5b and Fig. 5c) in which the

openings are included to reproduce the presence of the

10



windows. The 30 machicolations are conceived indi-

vidually as elastic tetrahedral finite elements. The slab

built on top of the tower is also modeled as a single

elastic tetrahedron element. A penalty contact algo-

rithm is used to connect the finite elements (namely the

30 machicolations and the top slab) to the main LDPM

core (i.e. the body tower). The nodes belonging to

the bottom surface of the tower are restrained by fix-

ing all the rotations and the translations perpendicular

to the direction of the seismic action. For all the simu-

lations, three different LDPM meshes corresponding to

three random stone distributions within the volume of

the body tower are used. The presence of the self-weight

is considered by preliminary applying the gravity loads.

4.2.2. Inputs for the seismic action

The load is imposed as a velocity in displacement

control conditions and it is applied to a node list con-

tained in a 500 mm height portion located at the bot-

tom of the cylinder. For the benchmark case, the di-

rection and the magnitude of the velocity are consistent

with the ones of the 2009 L’Aquila earthquake and they

are obtained following the procedure described in [76].

More specifically, the AQV accelerometric station, pro-

vides three histories of accelerations for the main shock

of the L’Aquila seismic sequence, that are related to

the North-South direction (aNS (t)), the Est-West direc-

tion (aEW (t)), and the vertical direction (aZ(t)), respec-

tively [77]. In general, knowing the evolution in time of

the ground acceleration ai(t) for the generic direction i,

it is possible to obtain the history of velocity related to

the same direction vi(t) by integrating in time the his-

tory of acceleration: vi(t) =
∫ t2

t1
ai(t)dt. In this study,

by neglecting the vertical component of the seismic ac-

tion, and by considering a significant observation time

of 10 seconds, one gets the histories of velocities in the

North-South direction vNS (t) and in the Est-West direc-

tion vEW (t), as shown in Fig. 6a and Fig. 6b. Hence,

the histories of velocities are projected along the par-

allel direction (Parallel Strike) and the orthogonal di-

rection (Normal Strike) to the fault plane (see Fig. 6c

and Fig. 6d). Finally, the magnitude of the velocity to

be applied to the bottom of the cylinder has been set to

590 mm/s: its value is the summation between the two

consecutive maximum Peaks Ground Velocities (PGV)

taken in absolute value, i.e. 330 mm/s and 260 mm/s,

as shown in Fig. 6d. Once the benchmark direction and

magnitude of the velocity have been set to 147°of Strike

(see Section 3) and 590 mm/s, other five cases are in-

vestigated, making varying either the magnitude or the

direction of the velocity. Particularly, fixing the velocity

direction to 147° with respect to the North-South axis,

two magnitudes of velocity are considered, i.e. -330

mm/s and 260 mm/s, being the negative and positive

maximum PGV, respectively. Moreover, fixing the ve-

locity magnitude to 590 mm/s, three directions of veloc-

ity are considered, i.e. 15°, 45° and 90° with respect to

the North-South axis, respectively.

4.3. Analysis of results and discussion

The results of the numerical simulations preformed

on the benchmark case of Fig. 7a and Fig. 7b show that

LDPM has the predictive capability of simulating the

behavior of the tower under seismic excitation, show-
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Figure 7: Cracked configuration in the Medici tower, perfectly simulating the failure occurred during the 2009 L’Aquila earthquake (a) in the South-
Est facade; (b) in the North-West facade; (c) Tower stump after the 2009 L’Aquila earthquake; meso-scale crack openings assuming a direction of
the seismic action rotated with respect to the North-South direction of: (d) 90◦; (e) 45◦; (f) 15◦.
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ing an excellent matching between the actual failure (in

Fig. 7c) and the simulated ones (in Fig. 7a and Fig. 7b).

In particular, the main contour of the mesoscale crack

triggers from the bottom opening, and propagates diag-

onally reaching the top narrow window. This consid-

eration suggests a correspondence between the type of

failure and the presence of doors and windows, that in-

terrupts the structural continuity of the masonry cylin-

der. For simple and compound geometries, Mercuri and

coworkers [51] recently pointed out that the presence of

openings greatly affects the seismic out-of-plane behav-

ior of one- or two-story masonry walls, placed individ-

ually or collocated within the continuity of the facade.

In that work, it has been demonstrated that the reduc-

tions of stiffness and bearing capacity are greater if the

amount of opening within the wall increases. These ob-

servations appear to be realistic also for the description

of the seismic behavior of complex geometries, as for

the tower analyzed here. Thus, it is of primary rele-

vance to account for the openings while considering the

most suitable modeling strategy. It is also of paramount

importance to observe diffused cracks at the top of the

tower, with fractures extending all around the merlons

of the battlement (see Fig. 7a and Fig. 7b). This phe-

nomenon is probably caused by the motion of the rigid

concrete slab built on top of the tower during the Sec-

ond World War, when the tower was used as antiaircraft

station. The slab, modeled using a single elastic finite

element mesh, turned out to fall down almost untouched

as consequence of the April 2009 earthquake. These

results emphasize that the most appropriate modeling

choices depend upon a deep knowledge of the building

historical phases, achieved through profound cognitive

investigations. In fact, ancient masonries are the results

of several structural modifications along the centuries:

the related functional changes affect the structural be-

havior and they have to be preliminary identified for the

appropriate performance of numerical simulations.

Moreover, it worth mentioning that the simulated

fracturing behavior of the tower mostly depends on the

direction of the seismic action rather than the magni-

tude of the velocity, as shown in Fig. 7c, Fig. 7d and

Fig. 7e. The fractured configurations related to the two

cases with Strike fixed at 147° and PGV of 330 m/s and

260 m/s qualitatively coincide with the benchmark case

(characterized by a PGV of 590 mm/s and shown in

Fig. 7a and Fig. 7b) and, for the sake of brevity, they

are not reported in this paper. On the other hand, Fig. 7

also reports the three different failure mechanisms of the

tower, by setting the PGV to 590 mm/s and varying the

direction of the seismic action. In particular, Fig. 7c,

Fig. 7d and Fig. 7e show that the fractures become more

diffused and almost vertical as the seismic direction ro-

tates with respect to the North-South direction, of 90◦,

45◦ and 15◦ respectively. The differences in the con-

figuration of the fracturing patterns can be due to the

variability in the relative position of the openings with

respect to the direction of the seismic action. Overall,

the LDPM shows a wide capability to capture the frac-

turing behavior up to the overall collapse of the struc-

ture for simple and complex geometries subjected to a

variety of loading conditions.
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5. The linear kinematic analysis

In this section, the linear kinematic analysis is applied

to the structural configuration identified as benchmark

case in Section 4.2 and Section 4.3, that reproduced

the fracture pattern occurred during the 2009 L’Aquila

earthquake. As already mentioned, the main contour

is diagonal and it extends from the bottom opening to

the top narrow window. For the kinematic analysis per-

formed in this section, the crack is assumed to trigger

from the bottom of the lower opening, at about 3.80 m

from the ground, reaching the bottom of the top win-

dow, at about 13.00 m from the ground. According to

[58], within the context of the linear kinematic analysis,

the Life Safety Limit State (SLV) check for the generic

mechanism is carried out by comparing the activating

acceleration a∗0, that represents the capacity of the struc-

ture, with the maximum expected spectral acceleration

for the structure in ultimate conditions aexp,S LV , that rep-

resents the demand:

a∗0 ≥ aexp,S LV (5)

An alternative expression for the check of SLV Limit

State consists in the following inequality, stating that the

acceleration factor fa,S LV is greater than one:

fa,S LV =
a∗0

aexp,S LV
≥ 1 (6)

To evaluate the structural capacity, the activating ac-

celeration a∗0 has to be computed. As a first step, the

Virtual Work Theorem is applied by writing a work bal-

ance equation:

WE,S + WE,G = WI (7)

where WE,S is the external work done by seismic forces,

WE,G is the external work done by gravity forces, and

WI is the work done by internal forces. In the case of

rigid bodies, the internal work is set equal to zero, as no

elastic/post-elastic deformation takes place. Developing

the latter expression, the horizontal multiplier α0 that

activates the analyzed failure mode can be identified:

α0

 n∑
i=1

mb,iδx,i +

n+m∑
i=n+1

m f ,iδx,i

 + g
n∑

i=1

mb,iδy,i = 0 (8)

where n is the number of blocks of the kinematic chain,

m is the number of internal floors, mb,i is the mass of

the generic block, m f ,i is the mass of the generic floor,

δx,i is the virtual horizontal displacement of the point of

application of the i-th seismic force and δy,i is the virtual

vertical displacement of the i-th weight-force.

Finally, the activating acceleration a∗0 can be com-

puted through the following equation:

a∗0 =
α0

∑n+m
i=1 mi

M∗FC
=

α0

e∗FC
(9)

where mi is the mass of the generic block or floor, FC is

the confidence factor accounting for the knowledge of

the building, e∗ = M∗/
∑n

i=1 mi is the participant mass

ratio of the considered mechanism and M∗ is the partic-

ipant mass obtained as a function of the virtual displace-

ments:
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Table 2: Kinematic analytical parameters for the computation of the structural capacity.
Latitude Longitude α0 e∗ Fc a∗0

[°] [°] [-] [-] [-] [m/s2]
42.34 13.65 0.232 0.896 1.35 1.882

Table 3: Seismic parameters for the computation of the structural demand.
ag,S LV F0 T ∗c T1 S S S T S q S e,S LV (T1) aexp,S LV fa,S LV

[g] [-] [s] [s] [-] [-] [-] [-] [g] [m/s2] [-]
0.256 2.365 0.344 0.404 1.16 1.40 1.62 1.75 4.07 2.33 0.809

M∗ =

(∑n+m
i=1 miδx,i

)2∑n+m
i=1 miδ

2
x,i

(10)

Tab. 2 shows the values of the kinematic parameters

adopted for the computation of the structural capacity.

Aiming to quantify the structural demand aexp,S LV ,

the fundamental period of the structure T1 is prelim-

inary computed. With this purpose, several empirical

formulas have been proposed trying to estimate the fun-

damental period of masonry towers as a function of their

height H [58, 78, 79]. In particular, Ranieri and Fab-

broncino [79] proposed a correlation between T1 and H

and compared the formula against a database of 30 Ital-

ian historical masonry towers, demonstrating that their

expression provides the most accurate prediction for this

specific structural typology. Hence, their formula will

be adopted in this study:

T1 = 0.013H1.138 (11)

If the activated portion lies directly on the foundation,

aexp,S LV is evaluated as follows:

aexp,S LV =
ag,S LVS

q
(12)

where ag,S LV is the reference PGA considered for a

return period of 475 years, corresponding to the SLV

Limit State, S is a correction factor accounting for the

soil type and topography conditions, and q is the reduc-

tion factor that describes the ability of the system to dis-

sipate energy in the non-elastic phase. The values of the

aforementioned parameters are listed in Tab. 3 and they

are computed according to [80, 58].

If the activated portion is located some distance above

the foundation, an other expression has to be considered

in addition to Eq. 12, accounting for the potential am-

plifications in acceleration due to the dynamic response

of the structure. In this case, ag,S LV is the maximum of

the two following expressions:

aexp,S LV = max


ag,S LV S

q

S e,S LV (T1)ψ(z)γ
q

(13)

where S e,S LV (T1) is the amplitude of the elastic spec-

trum corresponding to SLV Limit State, evaluated for

the fundamental period of the structure T1, ψ(z) = z/H

is the first vibration mode, approximated with a linear

distribution along the height and normalized to one in

correspondence of the building top, with z being the

height of the kinematic hinge related to the considered
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Figure 8: Geometrical configurations for linear kinematic analysis preformed assuming different diagonal fractures in function of the openings
position yW ; the reader is referred to Tab. 4 for the detailed description of the cracked pattern.

Case Description yBW yTW

[Id] fracture [m] [m]
b-B from the bottom of the lower opening to the bottom of the higher window 3.80 13.00
m-B from the middle of the lower opening to the bottom of the higher window 4.90 13.00
h-B from the top of the lower opening to the bottom of the higher window 6.00 13.00
b-H from the bottom of the lower opening to the top of the higher window 3.80 13.50
m-H from the middle of the lower opening to the top of the higher window 4.90 13.50
h-H from the top of the lower opening to the top of the higher window 6.00 13.50

Table 4: Geometrical parameters for the linear kinematic analysis.

mechanism with respect to the foundation and H the

total height of the structure. In Eq. 13, the expres-

sion γ = 3N/(2N + 1) represents the modal participa-

tion coefficient, where N is the number of the levels

of the structure. It is worth noting that this simplified

formula is applicable to structures that can be plausi-

bly modeled with lumped masses located at the level

of the floor connected by beam elements. Thus, the for-

mula well approximates structural configurations whose

floor masses are significantly greater than the masses of

the vertical structures. For the Medici tower the verti-

cal masonry structure is more massive than the floors
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Table 5: Analytical parameters for the SLV limit state check.
Case α0 e∗ Fc a∗0 fa,S LV SLV
[Id] [-] [-] [-] [m/s2] [-] check
b-B 0.232 0.896 1.35 1.882 0.809 x
m-B 0.250 0.888 1.35 2.049 0.881 x
h-B 0.272 0.880 1.35 2.243 0.963 x
b-H 0.228 0.892 1.35 1.857 0.798 x
m-H 0.246 0.884 1.35 2.020 0.868 x
h-H 0.267 0.877 1.35 2.209 0.970 x

x = not satisfied

Figure 9: (a) Horizontal multiplier α0 as a function of the openings position yW ; (b) activating acceleration a∗0 as a function of the openings
position yW .

and, therefore, a coefficient N = 1 is assumed. Thus,

the modal participation coefficient turns out to be γ = 1,

which means assuming that the first mode is the only

one that significantly affects the acceleration aexp,S LV .

This assumption seems to be coherent with the simu-

lated type of mechanism (shown in Fig. 7a and Fig. 7b)

and the actual failure (see Fig. 7c). The values of the

aforementioned parameters are listed in Tab. 3 and they

are computed according to [80, 58]. Tab. 3 reports also

the value of the acceleration factor ( fa,S LV=0.809) for

the considered mechanism. Being fa,S LV less than 1, the

SLV check is not verified and the collapse mechanism

is activated.

6. Bridging LDPM with kinematic analysis

The results of the numerical simulations performed

on the benchmark case of Fig. 7a and Fig. 7b showed

that the main crack triggers from the bottom opening,

and propagates diagonally reaching the top narrow win-

dow. Nevertheless, because of the heterogeneous nature

of the masonry, the mutual position between the frac-

ture contour and the openings is not clearly defined in

the numerical results. On the other hand, the kinematic

analysis performed in Sec. 5 assumed the diagonal crack

to trigger from the bottom of the lower opening, at about

3.80 m from the ground, reaching the bottom of the top

window, at about 13.00 m from the ground (Case b-B

17



in Fig. 8a). However, the randomness affecting the frac-

turing pattern should be considered while bridging the

LDPM results with the kinematic analysis. With this

aim, five additional cases (shown in Fig. 8 and Tab. 4)

are analytically investigated by varying the reciprocal

position between the diagonal fracture and the location

of the openings. Fig. 8 illustrates the cracked config-

urations and Tab. 4 reports the geometrical parameters

assumed for the linear kinematic analysis. The first set

of three cases (cases b-B, m-B and h-B, corresponding

to Fig. 8a, Fig. 8b and Fig. 8c, respectively) provides the

diagonal crack to reach the bottom of the top window, at

about 13.00 m from the ground, and to trigger from the

bottom, the middle and the top of the lower opening, at

3.80 m, 4.90 m and 6.0 m from the ground, respectively.

The second set of three cases (cases b-H, m-H and h-H,

corresponding to Fig. 8d, Fig. 8e and Fig. 8f, respec-

tively) assumes the diagonal crack to reach the top of

the highest window, at about 13.50 m from the ground,

and to trigger from the bottom, the middle and top of

the lower opening, at 3.80 m, 4.90 m and 6.0 m from

the ground, respectively.

The results of the kinematic analysis are reported in

Tab. 5 and Fig. 9. For all the cases, the SLV check is not

verified and the collapse mechanisms are activated. In

fact, the activating acceleration a∗0 is always lower than

the maximum expected spectral acceleration aexp,S LV ,

as shown in Fig. 9b. Although the checks are not ver-

ified for all the cases, each one of them shows a dif-

ferent value of acceleration factor fa,S LV , ranging from

0.798 to 0.970. In addition, a trend can be found: the ac-

celeration factor fa,S LV increases as the position of the

crack in the vicinity of the bottom opening is assumed

to be located at the bottom, the middle, or at the top (see

Fig. 9c). It is worth noting that the assumption made for

the benchmark case, i.e. crack starting from the bot-

tom of the bottom window to the bottom of the top win-

dow, is in favor of safety as the acceleration factor is

one of the lowest among the six cases ( fa,S LV=0.809).

The damage surveys following relevant seismic events

brought to light recurring types of crack depending on

the presence and the location of the openings within the

masonry walls. For walls included within the continu-

ity of the facade, one of the most recurrent observations

of the damage consists in inclined cracks that propagate

from the top of the bottom opening to the bottom of the

top window and they are known in the field as the Saint

Andrea Cross [81, 82]. For the tower analysed in this

study, the results shown in Fig. 9c indicate that such an

assumption does not lead to a calculation of the ultimate

condition on the safest side. In fact, for the analyzed

geometry (case Case h-B shown in Fig. 8c), the corre-

sponding value of the acceleration factor is very close to

the threshold value 1.0 ( fa,S LV=0.963), which questions

the reliability of the SLV check.

The results demonstrate that the method proposed

in this paper, i.e. identifying the main failure pattern

from the lattice discrete modeling, and then performing

and refining the simplified kinematic analysis, allows to

obtain realistic ultimate conditions for a given geome-

try. However, in other situations, it appears difficult or

impossible to proceed this way, as the damage cannot
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be described by a single crack. For instance, Fig. 7c,

Fig. 7d and Fig. 7e showed that the fracture becomes

less localized and more distributed as the seismic direc-

tion changes. Similar conclusions have been reached

in the work of Mercuri and coworkers [51]: in the most

general case, it is necessary to analyze the fracturing and

the collapse behavior of masonry structures with elabo-

rate numerical models, such as LDPM, in addition to

simplified kinematic analysis.

7. Summary and conclusions

Due to their slender geometry and the brittle het-

erogeneous nature of their constituent material, ancient

masonry towers are highly vulnerable to seismic ac-

tions. The mechanical response, the induced damage,

and the eventual collapse mechanism due to the action

of the earthquake depend on the geometrical features

and properties of masonry. In order to calculate the ul-

timate conditions of these towers, kinematic analyses

are most often performed. Building codes usually re-

quire the identification of collapse mechanisms, which

in turns require a preliminary thorough survey of the an-

alyzed structure. In this study, a comprehensive numer-

ical model, namely the Lattice Discrete Particle Model,

is adopted to model the masonry fracturing behavior and

predict the most likely to occur collapse mechanism.

The information about crack distribution and location

are then used to define the fractured structural configu-

ration in the kinematic analysis. This paper incorporates

this method to investigate the fracturing behavior of the

Medici tower subjected to the seismic excitation due to

the 2009 L’Aquila earthquake. Crack contours are sim-

ulated and six different failure locations are assumed for

the kinematic analysis. The obtained results suggest the

following conclusions:

• The failure of the Medici tower under seismic ex-

citation is numerically well replicated by LDPM.

• The failure pattern greatly depend on the direction

of the seismic action.

• The kinematic analysis performed with six dif-

ferent configurations underline the importance of

identifying the correct collapse mechanism to ob-

tain more reliable SLV checks.

The proposed method is successful in analyzing the ulti-

mate condition of the Medici tower. It appears however

that in other cases, for instance if different directions

of the seismic action are assumed, the use of simplified

kinematic analyses is only a crude approximation. In

fact, these situations call for advanced numerical mod-

els capable of accurately capturing fracture propagation

and crack distribution in order to assess the vulnerabil-

ity of existing masonry structures.
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[46] A. Giuffrè, Sicurezza e conservazione dei centri storici, Il caso

Ortigia (1993) 279.

[47] G. Bartoli, M. Betti, A. Vignoli, A numerical study on seismic

risk assessment of historic masonry towers: a case study in san

gimignano, Bulletin of Earthquake Engineering 14 (6) (2016)

1475–1518.

[48] V. Sepe, E. Speranza, A. Viskovic, A method for large-scale

vulnerability assessment of historic towers, Structural Control

and Health Monitoring: The Official Journal of the International

Association for Structural Control and Monitoring and of the

European Association for the Control of Structures 15 (3) (2008)

389–415.

[49] Z. P. Bazant, Fracture and size effect in concrete and other qua-

sibrittle materials, Routledge, 2019.

[50] G. Cusatis, L. Cedolin, Two-scale study of concrete fracturing

21



behavior, Engineering Fracture Mechanics 74 (1-2) (2007) 3–

17.

[51] M. Mercuri, M. Pathirage, A. Gregori, G. Cusatis, Computa-

tional modeling of the out-of-plane behavior of unreinforced ir-

regular masonry, Engineering Structures 223 (2020) 111181.

[52] A. Gregori, H. Salem, T. Harak, K. Fassieh, A. Khalil, Collapse

analysis of santo stefano tower using applied element method,

in: Proceedings of 16th world conference on earthquake engi-

neering, 16WCEE, 2017.

[53] I. N. di Geofisica e Vulcanologia, The l’aquila seismic sequence,

april 2009, http://www.ingv.it.

[54] G. Ameri, P. Augliera, D. Bindi, E. D’Alema, C. Ladina, S. Lo-

vati, L. Luzi, S. Marzorati, M. Massa, F. Pacor, et al., Strong-

motion parameters of the mw= 6.3 abruzzo (central italy) earth-

quake (2009).

[55] E. Chioccarelli, F. De Luca, I. Iervolino, Preliminary study of

l’aquila earthquake ground motion records v5. 20, ReLuis Re-

port, http://www. reluis. it (2009).

[56] L. Decanini, L. Liberatore, F. Mollaioli, G. Monti, O. Al Shawa,

Studio preliminare della domanda sismica elastica ed anelastica

in termini di energia, spostamento e forze (rel. 1.0), Web report

available at http://www. reluis. it (2009).

[57] E. Chioccarelli, I. Iervolino, Direttività e azione sismica: dis-
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